Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 4115, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37433806

RESUMO

Understanding the complexity of cellular function within a tissue necessitates the combination of multiple phenotypic readouts. Here, we developed a method that links spatially-resolved gene expression of single cells with their ultrastructural morphology by integrating multiplexed error-robust fluorescence in situ hybridization (MERFISH) and large area volume electron microscopy (EM) on adjacent tissue sections. Using this method, we characterized in situ ultrastructural and transcriptional responses of glial cells and infiltrating T-cells after demyelinating brain injury in male mice. We identified a population of lipid-loaded "foamy" microglia located in the center of remyelinating lesion, as well as rare interferon-responsive microglia, oligodendrocytes, and astrocytes that co-localized with T-cells. We validated our findings using immunocytochemistry and lipid staining-coupled single-cell RNA sequencing. Finally, by integrating these datasets, we detected correlations between full-transcriptome gene expression and ultrastructural features of microglia. Our results offer an integrative view of the spatial, ultrastructural, and transcriptional reorganization of single cells after demyelinating brain injury.


Assuntos
Lesões Encefálicas , Transcriptoma , Masculino , Animais , Camundongos , Hibridização in Situ Fluorescente , Microscopia Eletrônica , Lesões Encefálicas/genética , Lipídeos
2.
J Neurosci ; 34(42): 14069-78, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25319703

RESUMO

Apolipoprotein (apo) E4 is expressed in many types of brain cells, is associated with age-dependent decline of learning and memory in humans, and is the major genetic risk factor for AD. To determine whether the detrimental effects of apoE4 depend on its cellular sources, we generated human apoE knock-in mouse models in which the human APOE gene is conditionally deleted in astrocytes, neurons, or GABAergic interneurons. Here we report that deletion of apoE4 in astrocytes does not protect aged mice from apoE4-induced GABAergic interneuron loss and learning and memory deficits. In contrast, deletion of apoE4 in neurons does protect aged mice from both deficits. Furthermore, deletion of apoE4 in GABAergic interneurons is sufficient to gain similar protection. This study demonstrates a detrimental effect of endogenously produced apoE4 on GABAergic interneurons that leads to learning and memory deficits in mice and provides a novel target for drug development for AD related to apoE4.


Assuntos
Apolipoproteína E4/biossíntese , Neurônios GABAérgicos/metabolismo , Interneurônios/metabolismo , Aprendizagem/fisiologia , Transtornos da Memória/metabolismo , Animais , Feminino , Neurônios GABAérgicos/patologia , Humanos , Interneurônios/patologia , Transtornos da Memória/patologia , Camundongos , Camundongos Transgênicos
3.
J Neurosci ; 34(29): 9506-15, 2014 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-25031394

RESUMO

Excitatory and inhibitory balance of neuronal network activity is essential for normal brain function and may be of particular importance to memory. Apolipoprotein (apo) E4 and amyloid-ß (Aß) peptides, two major players in Alzheimer's disease (AD), cause inhibitory interneuron impairments and aberrant neuronal activity in the hippocampal dentate gyrus in AD-related mouse models and humans, leading to learning and memory deficits. To determine whether replacing the lost or impaired interneurons rescues neuronal signaling and behavioral deficits, we transplanted embryonic interneuron progenitors into the hippocampal hilus of aged apoE4 knock-in mice without or with Aß accumulation. In both conditions, the transplanted cells developed into mature interneurons, functionally integrated into the hippocampal circuitry, and restored normal learning and memory. Thus, restricted hilar transplantation of inhibitory interneurons restores normal cognitive function in two widely used AD-related mouse models, highlighting the importance of interneuron impairments in AD pathogenesis and the potential of cell replacement therapy for AD. More broadly, it demonstrates that excitatory and inhibitory balance are crucial for learning and memory, and suggests an avenue for investigating the processes of learning and memory and their alterations in healthy aging and diseases.


Assuntos
Doença de Alzheimer , Apolipoproteína E4/genética , Hipocampo/patologia , Interneurônios/fisiologia , Aprendizagem/fisiologia , Memória/fisiologia , Células-Tronco Neurais/transplante , Doença de Alzheimer/genética , Doença de Alzheimer/fisiopatologia , Doença de Alzheimer/cirurgia , Precursor de Proteína beta-Amiloide/genética , Animais , Modelos Animais de Doenças , Feminino , Humanos , Técnicas In Vitro , Masculino , Aprendizagem em Labirinto , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação/genética , Proteínas do Tecido Nervoso/metabolismo
4.
Stem Cell Reports ; 1(3): 226-34, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24319659

RESUMO

Tauopathies represent a group of neurodegenerative disorders characterized by the accumulation of pathological TAU protein in brains. We report a human neuronal model of tauopathy derived from induced pluripotent stem cells (iPSCs) carrying a TAU-A152T mutation. Using zinc-finger nuclease-mediated gene editing, we generated two isogenic iPSC lines: one with the mutation corrected, and another with the homozygous mutation engineered. The A152T mutation increased TAU fragmentation and phosphorylation, leading to neurodegeneration and especially axonal degeneration. These cellular phenotypes were consistent with those observed in a patient with TAU-A152T. Upon mutation correction, normal neuronal and axonal morphologies were restored, accompanied by decreases in TAU fragmentation and phosphorylation, whereas the severity of tauopathy was intensified in neurons with the homozygous mutation. These isogenic TAU-iPSC lines represent a critical advancement toward the accurate modeling and mechanistic study of tauopathies with human neurons and will be invaluable for drug-screening efforts and future cell-based therapies.


Assuntos
Terapia Genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Tauopatias/genética , Tauopatias/terapia , Proteínas tau/genética , Axônios/metabolismo , Axônios/patologia , Axônios/fisiologia , Diferenciação Celular/genética , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Mutação , Neurônios/metabolismo , Neurônios/patologia , Neurônios/fisiologia , Fenótipo , Tauopatias/patologia , Proteínas tau/metabolismo
5.
PLoS One ; 8(3): e59478, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23527202

RESUMO

Apolipoprotein (apo) E4 is the leading genetic risk factor for Alzheimer's disease (AD), and it has a gene dose-dependent effect on the risk and age of onset of AD. Although apoE4 is primarily produced by astrocytes in the brain, neurons can also produce apoE4 under stress conditions. ApoE4 is known to inhibit neurite outgrowth and spine development in vitro and in vivo, but the potential influence of apoE4's cellular source on dendritic arborization and spine development has not yet been investigated. In this study, we report impairments in dendritic arborization and a loss of spines, especially thin (learning) and mushroom (memory) spines, in the hippocampus and entorhinal cortex of 19-21-month-old female neuron-specific-enolase (NSE)-apoE4 and apoE4-knockin (KI) mice compared to their respective apoE3-expressing counterparts. In general, NSE-apoE4 mice had more severe and widespread deficits in dendritic arborization as well as spine density and morphology than apoE4-KI mice. The loss of dendritic spines, especially mushroom spines, occurred in NSE-apoE4 mice as early as 7-8 months of age. In contrast, glial fibrillary acidic protein (GFAP)-apoE4 mice, which express apoE4 solely in astrocytes, did not have impairments in their dendrite arborization or spine density and morphology compared to GFAP-apoE3 mice at both ages. These results indicate that the effects of apoE4 on dendrite arborization, spine density, and spine morphology depend critically on its cellular source, with neuronal apoE4 having more detrimental effects than astrocytic apoE4.


Assuntos
Apolipoproteína E4/metabolismo , Astrócitos/metabolismo , Dendritos/fisiologia , Espinhas Dendríticas/fisiologia , Córtex Entorrinal/fisiologia , Hipocampo/fisiologia , Neurônios/metabolismo , Análise de Variância , Animais , Apolipoproteína E4/genética , Córtex Entorrinal/citologia , Feminino , Técnicas de Introdução de Genes , Proteína Glial Fibrilar Ácida/metabolismo , Hipocampo/citologia , Camundongos , Camundongos Transgênicos
6.
Nat Protoc ; 6(12): 1887-96, 2011 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-22051801

RESUMO

In this protocol, we describe the imaging of single axons in the rat optic nerve in vivo. Axons are labeled through the intravitreal injection of adeno-associated viral vectors (AAVs) expressing a fluorophore (duration of the procedure ∼1 h). Two weeks after intravitreal injection, the optic nerve is surgically exposed (duration ∼1 h) and labeled axons are imaged with an epifluorescence microscope either for up to 8 h or repetitively on the following days. Additionally, intravitreal injection of calcium-sensitive dyes allows for imaging of intra-axonal calcium kinetics. This procedure enables the analysis of the morphological changes of degenerating axons in the optic nerve in different lesion paradigms, such as optic nerve crush, axotomy or pin lesion. Furthermore, the effects of pharmacological manipulations on axonal stability and axonal calcium kinetics in axons of the central nervous system can be studied in vivo.


Assuntos
Axônios/ultraestrutura , Microscopia de Fluorescência/métodos , Degeneração Neural/patologia , Nervo Óptico/ultraestrutura , Animais , Cálcio/metabolismo , Dependovirus , Feminino , Vetores Genéticos , Cinética , Ratos , Ratos Wistar
7.
Autophagy ; 6(5): 658-9, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20458173

RESUMO

Axonal degeneration is a pathological hallmark of many traumatic and neurodegenerative neurological disorders. Although the underlying mechanisms remain largely unclear, increased autophagy and the influx of extracellular calcium have been implicated in the pathogenesis of axonal degeneration based on in vitro data. Using in vivo imaging of the rat optic nerve after crush lesion we could now show that both mechanisms are linked and play an important role in acute axonal degeneration in vivo. Our data suggest that crush lesion of the optic nerve induces a rapid calcium influx through calcium channels, which results in a secondary induction of autophagy that participates actively in axonal degradation. Therapeutic manipulation of both events could significantly alter the time course of acute axonal degeneration in vivo and may thus represent promising therapeutic targets for the future.


Assuntos
Autofagia , Axônios/patologia , Cálcio/metabolismo , Degeneração Neural/patologia , Adenina/análogos & derivados , Adenina/farmacologia , Animais , Autofagia/efeitos dos fármacos , Axônios/efeitos dos fármacos , Axônios/ultraestrutura , Humanos , Células MCF-7 , Compressão Nervosa , Nervo Óptico/patologia , Nervo Óptico/ultraestrutura , Ratos
8.
Neurobiol Dis ; 38(3): 395-404, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20211260

RESUMO

Malfunction of the ubiquitin-proteasome system has been implicated as a causal factor in the pathogenesis of aggregation-related disorders, e.g. Parkinson's disease. We show here that Transforming growth factor-beta 1 (TGF-beta), a multifunctional cytokine and trophic factor for dopaminergic (DAergic) neurons modulates proteasome function in primary midbrain neurons. TGF-beta differentially inhibited proteasomal subactivities with a most pronounced time-dependent inhibition of the peptidyl-glutamyl peptide hydrolyzing-like and chymotrypsin-like subactivity. Regulation of proteasomal activity could be specifically quantified in the DAergic subpopulation. Protein blot analysis revealed an accumulation of ubiquitinated proteins after TGF-beta treatment. The identity of these enriched proteins was further analyzed by 2D-gel electrophoresis and mass spectrometry. We found epidermal fatty acid binding protein (EFABP) to be strongly increased and ubiquitinated after TGF-beta treatment and confirmed this finding by co-immunoprecipitation. While application of TGF-beta increased neurite regeneration in a scratch lesion model, downregulation of EFABP by siRNA significantly decreased this effect. We thus postulate that a differential regulation of proteasomal function, as demonstrated for TGF-beta, can result in an enrichment of proteins, such as EFABP, that mediate physiological functions, such as neurite regeneration.


Assuntos
Proteínas do Olho/metabolismo , Proteínas de Ligação a Ácido Graxo/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neuritos/fisiologia , Complexo de Endopeptidases do Proteassoma/fisiologia , Fator de Crescimento Transformador beta1/metabolismo , Animais , Crescimento Celular , Células Cultivadas , Dopamina/metabolismo , Hidrólise , Mesencéfalo/fisiologia , Regeneração Nervosa/fisiologia , Neurônios/fisiologia , Ratos , Ratos Wistar , Fatores de Tempo , Ubiquitinação
9.
Proc Natl Acad Sci U S A ; 107(13): 6064-9, 2010 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-20231460

RESUMO

Axonal degeneration is an initial key step in traumatic and neurodegenerative CNS disorders. We established a unique in vivo epifluorescence imaging paradigm to characterize very early events in axonal degeneration in the rat optic nerve. Single retinal ganglion cell axons were visualized by AAV-mediated expression of dsRed and this allowed the quantification of postlesional acute axonal degeneration (AAD). EM analysis revealed severe structural alterations of the cytoskeleton, cytoplasmatic vacuolization, and the appearance of autophagosomes within the first hours after lesion. Inhibition of autophagy resulted in an attenuation of acute axonal degeneration. Furthermore, a rapid increase of intraaxonal calcium levels following crush lesion could be visualized using a calcium-sensitive dye. Application of calcium channel inhibitors prevented crush-induced calcium increase and markedly attenuated axonal degeneration, whereas application of a calcium ionophore aggravated the degenerative phenotype. We finally demonstrate that increased postlesional autophagy is calcium dependent and thus mechanistically link autophagy and intraaxonal calcium levels. Both processes are proposed to be major targets for the manipulation of axonal degeneration in future therapeutic settings.


Assuntos
Axônios/patologia , Degeneração Neural/patologia , Nervo Óptico/patologia , Animais , Autofagia , Sinalização do Cálcio , Dependovirus/genética , Feminino , Vetores Genéticos , Proteínas Luminescentes/genética , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Degeneração Neural/fisiopatologia , Nervo Óptico/fisiopatologia , Traumatismos do Nervo Óptico/patologia , Traumatismos do Nervo Óptico/fisiopatologia , Ratos , Ratos Wistar , Proteínas Recombinantes/genética , Células Ganglionares da Retina/patologia , Células Ganglionares da Retina/fisiologia , Fatores de Tempo
10.
Ann Neurol ; 66(1): 81-93, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19670438

RESUMO

OBJECTIVE: The aim of this study was to investigate the role of voltage-dependent calcium channels (VDCCs) in axon degeneration during autoimmune optic neuritis. METHODS: Calcium ion (Ca(2+)) influx into the optic nerve (ON) through VDCCs was investigated in a rat model of optic neuritis using manganese-enhanced magnetic resonance imaging and in vivo calcium imaging. After having identified the most relevant channel subtype (N-type VDCCs), we correlated immunohistochemistry of channel expression with ON histopathology. In the confirmatory part of this work, we performed a treatment study using omega-conotoxin GVIA, an N-type specific blocker. RESULTS: We observed that pathological Ca(2+) influx into ONs during optic neuritis is mediated via N-type VDCCs. By analyzing the expression of VDCCs in the inflamed ONs, we detected an upregulation of alpha(1B), the pore-forming subunit of N-type VDCCs, in demyelinated axons. However, high expression levels were also found on macrophages/activated microglia, and lower levels were detected on astrocytes. The relevance of N-type VDCCs for inflammation-induced axonal degeneration and the severity of optic neuritis was corroborated by treatment with omega-conotoxin GVIA. This blocker led to decreased axon and myelin degeneration in the ONs together with a reduced number of macrophages/activated microglia. These protective effects were confirmed by analyzing the spinal cords of the same animals. INTERPRETATION: We conclude that N-type VDCCs play an important role in inflammation-induced axon degeneration via two mechanisms: First, they directly mediate toxic Ca(2+) influx into the axons; and second, they contribute to macrophage/microglia function, thereby promoting secondary axonal damage. Ann Neurol 2009;66:81-93.


Assuntos
Doenças Autoimunes/metabolismo , Canais de Cálcio Tipo N/metabolismo , Neurite Óptica/metabolismo , 2',3'-Nucleotídeo Cíclico Fosfodiesterases/metabolismo , Anlodipino/farmacologia , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Doenças Autoimunes/induzido quimicamente , Doenças Autoimunes/patologia , Cálcio/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Citocinas/metabolismo , Modelos Animais de Doenças , Interações Medicamentosas , Ectodisplasinas/metabolismo , Ácido Egtázico/análogos & derivados , Antagonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Imageamento por Ressonância Magnética/métodos , Manganês/metabolismo , Proteínas da Mielina , Glicoproteína Associada a Mielina , Glicoproteína Mielina-Oligodendrócito , Proteínas de Neoplasias/metabolismo , Nervo Óptico/efeitos dos fármacos , Nervo Óptico/metabolismo , Neurite Óptica/induzido quimicamente , Neurite Óptica/patologia , Quinoxalinas/farmacologia , Proteínas de Ligação a RNA/metabolismo , Ratos , ômega-Conotoxina GVIA/farmacologia
11.
J Cell Biochem ; 97(6): 1350-61, 2006 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-16365881

RESUMO

CD95 (Fas/Apo-1) triggers apoptotic cell death via a caspase-dependent pathway. Inhibition of caspase activation blocks proapoptotic signaling and thus, prevents execution of apoptosis. Besides induction of apoptotic cell death, CD95 has been reported to trigger necrotic cell death in susceptible cells. In this study, we investigated the interplay between apoptotic and necrotic cell death signaling in T cells. Using the agonistic CD95 antibody, 7C11, we found that caspase inhibition mediated by the pancaspase inhibitor, zVAD-fmk, prevented CD95-triggered cell death in Jurkat T cells but not in A3.01 T cells, although typical hallmarks of apoptosis, such as DNA fragmentation or caspase activation were blocked. Moreover, the caspase-independent cell death in A3.01 cells exhibited typical signs of necrosis as detected by a rapid loss of cell membrane integrity and could be prevented by treatment with the radical scavenger butylated hydroxyanisole (BHA). Similar to CD95-induced cell death, apoptosis triggered by the DNA topoisomerase inhibitors, camptothecin or etoposide was shifted to necrosis when capsase activation was inhibited. In contrast to this, ZVAD was fully protective when apoptosis was triggered by the serpase inhibitor, Nalpha-tosyl-phenyl-chloromethyl ketone (TPCK). TPCK was not protective when administered to anti-CD95/ZVAD-treated A3.01 cells, indicating that TPCK does not possess anti-necrotic activity but fails to activate the necrotic death pathway. Our findings show (a) that caspase inhibition does not always protect apoptotic T cells from dying but merely activates a caspase-independent mode of cell death that results in necrosis and (b) that the caspase-inhibitor-induced shift from apoptotic to necrotic cell death is dependent on the cell type and the proapoptotic stimulus.


Assuntos
Apoptose/efeitos dos fármacos , Inibidores de Caspase , Necrose/metabolismo , Linfócitos T/metabolismo , Clorometilcetonas de Aminoácidos/metabolismo , Clorometilcetonas de Aminoácidos/farmacologia , Caspases/metabolismo , Morte Celular , Linhagem Celular , Inibidores de Cisteína Proteinase/metabolismo , Inibidores de Cisteína Proteinase/farmacologia , Humanos , Transdução de Sinais , Fatores de Tempo , Receptor fas/metabolismo , Receptor fas/farmacologia
12.
J Biol Chem ; 279(21): 21897-902, 2004 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-15016800

RESUMO

CpG oligodeoxynucleotides (CpG ODNs) stimulate immune cells via the Toll-like receptor 9 (TLR9). In this study, we have investigated the effects of CpG ODNs on latent human immunodeficiency virus (HIV) infection in human T cells. Treatment of the latently infected T cell line ACH-2 with CpG ODNs 2006 or 2040 stimulated HIV replication, whereas no effects were evident when ODNs without the CpG motif were used. CpG-induced virus reactivation was blocked by chloroquine, indicating the involvement of TLR9. In contrast to the responsiveness of ACH-2 cells, CpG ODNs failed to activate HIV provirus in the latently infected Jurkat clone J1.1. We also studied the effects of CpG ODNs on productive HIV infection and found enhancement of viral replication in A3.01 T cells, whereas again no stimulating effects were observed in Jurkat T cells. CpG ODN treatment activated NF-kappaB in ACH-2 cells, which was similarly triggered in uninfected A3.01 T cells following exposure to CpG ODNs, indicating that TLR9-induced signal transduction was not dependent on proviral infection. Our study demonstrates that CpG ODNs directly trigger the activation of NF-kappaB and reactivation of latent HIV in human T cells. Our results point to a novel role for CpG ODNs as stimulators of HIV replication and open new avenues to eradicate the latent viral reservoirs in HIV-infected patients treated with antiretroviral therapy.


Assuntos
Ilhas de CpG , HIV/efeitos dos fármacos , Oligonucleotídeos/farmacologia , Linfócitos T/virologia , Replicação Viral , Motivos de Aminoácidos , Cloroquina/farmacologia , Proteínas de Ligação a DNA/metabolismo , Relação Dose-Resposta a Droga , Citometria de Fluxo , Humanos , Células Jurkat , NF-kappa B/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Fatores de Tempo , Receptor Toll-Like 9
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...